Revision history [back]
(Just testing -- pay no attention to the man behind the curtain.)
G−≅N−×(U(n−1)×R+). Note the analogy with the Euclidean similarity group Sim(R2n+1)=R2n+1×(O(2n+1)×R+).
(Just testing -- pay no attention to the man behind the curtain.)
G−≅N−×(U(n−1)×R+). Note the analogy with the Euclidean similarity group Sim(R2n+1)=R2n+1×(O(2n+1)×R+).
[{{\mathfrak{n}}_{-}}=\left{ \left[ \begin{matrix} {{0}_{n-1}} & \zeta & \zeta \ -{{\zeta }^{}} & -iv & -iv \ {{\zeta }^{}} & iv & iv \ \end{matrix} \right],\zeta \in {{\mathbb{C}}^{n-1}},v\in \mathbb{R} \right}]
(Just testing -- pay no attention to the man behind the curtain.)
G−≅N−×(U(n−1)×R+). Note the analogy with the Euclidean similarity group Sim(R2n+1)=R2n+1×(O(2n+1)×R+).
[{{\mathfrak{n}}_{-}}=\left{ \left[ \begin{matrix} {{0}_{n-1}} & \zeta & \zeta \ -{{\zeta }^{}} & -iv & -iv \ {{\zeta }^{}} & iv & iv \ \end{matrix} \right],\zeta \in {{\mathbb{C}}^{n-1}},v\in \mathbb{R} \right}]
(Just testing -- pay no attention to the man behind the curtain.)
G−≅N−×(U(n−1)×R+). Note the analogy with the Euclidean similarity group $\text{Sim}({{\mathbb{R}}^{2n+1}})={{\mathbb{R}}^{2n+1}}\times $\operatorname{Sim}({{\mathbb{R}}^{2n+1}})={{\mathbb{R}}^{2n+1}}\times (\mathrm{O}(2n+1)\times {{\mathbb{R}}^{+}})$.